DRAFT COPY

Programmers Guideto
GARA

M ar ch 2000

2 DRAFT COPY

Contents

ADOUE GARA ...ttt bttt b bt £ b e b e e £ e e e b et e £ £ e b e Rt £ £ e b e R e e £ e A e R e e £ A e b et £ AR et eE b b e Re et e beRe e et ene e e 3
RESEIVALIONS. ...ttt ettt ettt et e b e b e e £ £ e b e e £ e b b e e £ b e b e Rt A £ S e b e Rt s £ A e b e Re e b e b e bt e st e be e e b e b e e e ns 4
TYPES Of NEEWOIK RESEIVELIONS........eeeiueieriieteerer ettt ettt b b e e e e b e et b et e e sttt e be e s et ebeneeas 5

L0 LS (o €7 NSO SSSSTRSRS 6
LTI T g To T A RS 6
Describing 8 RESEIVALION REGUESEc.cciiiieieeirietee sttt b e sttt e b et e et e bt e st bt et ns 6
Creating @ RESEIVALIONc.ccviiiiiiciesiee ettt ettt sa e e st eae st e e et e e e te s s eae st ese st ese et e e eaeseesessese st e e et e e esesaeseseenenteneasan 8
MOITYING @ RESENVALION........ociiieicteiete ettt be st st e e et e e e be s e ese st ese st eneetessesessesessesestenestenensensesens 8
QUENYING @ RESENVELION ..ottt sttt seete s e eaeste e e b e e e se st ese st ese st eseese e eaessesesesestene et e s esessenessenentenennan 9
BiNGING A RESENVBLIONecuiieeiteieteee ettt et s b et et e e ebe st e se st e se et eseete s esesese st eneetensesesesessesesseneetesensesenens 9
L0 LS T g0 @ o=t TSRS 10
CaNCEING A RESENVELION.cuiiieietiiete ettt e e e be e eae st e se st e e e te s esessesestesestesesseneeseseesestesessenestenenseennens 11
(1= ot A7 (] o T2 TSRS 11

GARA REFEIEINCE. ...ttt sttt et e e be e £ b et £ A e b et £ £ e b e b e e A e A e b et £ b e b e Rt e b e b e Re e b e b e be e b et e be e s ebebenas 11
CONSLANLS. ...ttt ettt et eae st et e e e e b e e e be e eae e e he s e ReeEeaeee e e ehe e ehe A e R e eEeReeE e e ebe s eh e b eneeEeneeb e e ebe e eae et eseasenenbe e naensenens 11
DA SIFUCLUIES ...ttt ettt b e e h e e e bt e e Rt b e e e b e e eR e e e Rt e e he e A e R e e b e e e R e e e he A e R e b e st e b et eb e e ebeneebe s enees 14
FFUNCEIONS. ...ttt et b bbbt E b e e £ £ e b2 Rt £ £ e b e R e e £ e b e b e e £ e b e b e st e e b e b e se e b et e be e s et e be e e et enenas 14

Appendix: Example Program USING GARA ...ttt s s bbbttt be e 19

DRAFT COPY 3

Note: Before you read about programming with GARA, you should have at least a passing
familiarity with Globus. You can learn more about Globubtgi://www.globus.orgThis guide
concentrates on describing GARA from a programmer’s perspective. If you need information on
installing and configuring GARA, please seeAluministrators Guide to GARA. If you would

like more information about the research being done with GARA, please see the papers availabl
at the Globus web site.

About GARA

The GARA architecture provides programmers with convenient access to end-to-end quality of
service (QoS) for programs. To do so, it provides mechanisms for making QoS reservations for
different types of resources, including computers, networks, and disks. A reservation is a
promise from GARA that an application will receive a certain level of service from a resource.
For example, a reservation may promise a certain bandwidth on a network or a certain
percentage of a CPU.

The GARA architecture is defined as a layered architecture with three levels of APIs and one
level of low-level mechanisms:

High-Level APIs
Adds end-to-end reservation mechanisms for
networks, by making multiple reservations.

GARA API
Adds ability to make remote, authenticated (GSI)

reservations

L ocal Reservation API

Makes reservations with diverse resource types;
within single trust domain.

Resour ce M anager
Controls admission and enforces reservations for
particular resources.

Figure 1 — GARA slayered architecture

Note that GARA refers to two things: the GARA Architecture, which refers to the entire
diagram above, and the GARA API, which isthe API for making a single reservation. This
document describes just the GARA API; the other portions of GARA are described elsewhere*

! At the time of this writing, these documents are still in preparation. However, many of the details can be learned
from the GARA research papers that are available on the Globus web page: http://www.globus.org.

4 DRAFT COPY

As a programmer, you will most likely be using the GARA API, and not the LRAM AP, so it
does not need to concern you further.

The GARA API has two interesting advantages. First, it allows you to make reservations either
in advance of when you need them or right at the time that you need theman immediate
reservation Second, you use the same API to make and manipulate a reservation regardless of
the type of the underlying resource, thereby simplifying your programming when you need to
work with multiple kinds of resources.

The GARA API can be considered a remote procedure call mechanism to communication with a
resource manager. A resource manager controls reservations for a resource: it performs
admission control and controls the resource to enforce the reservations. Some resources aready
have the ability to work with advanced reservations, so the resource manager is a simple
program. Most resources cannot deal with advanced reservations, so the resource manager tracks
the reservations and does admission control for new reservation requests. Much of the research
in GARA has focused on building useful resource managers.

As you begin using the GARA API, you may discover that you need to make multiple

simultaneous reservations. In the near future, high-level APIs to assist you with this sort of co-
reservationtask will be available.

Reservations

Reservations have five important attributes:

» Start Time:The time that the reservation begins. A reservation always has a start time, even
if it is an immediate reservation, which begins as soon as you make the reservation. The start
time is in seconds since 00:00:00 UTC, January 1, 1970. For example, if you want an
immediate reservation, you can just call the Unix ti me() function.

» Duration: How long the reservation lasts, in second. All reservations must specify how long
they will last, so that GARA can do appropriate admission control for reservations granted in
advance.

* Reservation Typelhe type of underlying resource, such as a network, a computer, or a disk.

* Reservation Subtyp@ particular kind of reservation. See Types of Network Reservations
below.

* Resource-Specific ParameteRarameters that are unique to each type of resource, such as
bandwidth for a network reservation.

When you request a reservation, you specify these attributes. If your reservation request is
accepted, you are provided with a reservation handleThis is an opague string that uniquely
identifies your reservation. All future operations require you to provide this handle.

DRAFT COPY 5

Once you have areservation handle, you can perform several operations with that handle:

* Modify ReservationY ou can request a modification to your reservation. For instance, you
can increase the bandwidth that you have requested.

» Cancel Reservation:You can inform GARA that you no longer need a reservation, by
canceling it.

» Claim ReservationWWhen you are ready to use areservation, you must claim the reservation.
Thisis known as binding a reservation because you specify run-time parameters that you did
not know when you created the reservation, such as ports being used for the network
reservation.

* Query ReservationYou can discover the status of a reservation by polling it. The status
includes whether the start of the reservation has begun and whether the reservation has been
claimed.

* Register CallbackiyYou can provide a function that will be called when the status of a
reservation changes or when GARA wishes to provide extra information to your program.
This information may include notification that your reservation appears to be too small. You
can react to this information by modifying your reservation or changing your application s
behavior.

Types of Network Reservations

GARA implements several types of network reservations (see the reservation subtype above):

* Foreground Reservation3ihese are also called normal reservations. They are reservations
for a specific bandwidth.

» Background Reservation$hese are also called bulk-transferreservations. A bulk transfer
reservation shares all of the bandwidth not claimed by foreground reservations. The amount
of bandwidth assigned to a particular reservation may change over time as foreground
reservations begin and end. Programs are notified what the current bandwidth assignment is
through a callback.

* Low-Latency:UDP flows that would like to avoid delays due to traffic shaping can request
low-latency reservations.

6 DRAFT COPY

Using GARA

GARA is provided as a library written in C. Any language that can link to C libraries can use
GARA. Thereisalso a Javaimplementation, but it is not described here. To use GARA, you will
first need to have linked your program with these libraries. You will need to include
gl obus_gara_client.h to provide prototypesfor the GARA functions, and related constants.

You will also need to include globus_common.h , to gain access to
gl obus_nodul e_acti vate() and gl obus_nodul e_deacti vat e().
Initializing GARA

Before you can use GARA, you need to initialize it. GARA isinitialized like other modules in
Globus, using the gl obus_nodul e_act i vat e:

gl obus_nodul e_acti vat e(G.OBUS_GARA CLI ENT_MODULE) ;

Describing a Reservation Request

Reservation attributes are described using the Resource Specification Language (RSL). An RSL
string issimply alist of attribute-value pairs that looks like

& attribute-1=value-1) (attribute-2=value-2) (attribute-N=value-N)

An example RSL string for requesting a network reservation for 150K bps between looks like
this:

&(reservation-type=net wor k)
(start-ti ne=953158862)
(duration=3600)

(endpoi nt - a=140. 221. 48. 146)
(endpoi nt - b=140. 221. 48. 106)
(bandwi dt h=150)

Note that this string was spaced out on several lines for readability, while RSL strings do not
have newlinesin them.

Below isalist of attributes that may be used to specify areservation. The universal attributes are
for all types of reservations, while the other attributes are for specific types of resources. Note
that the compute resource attributes are mutually exclusive, and currently only the percent-cpu
attribute is used.

DRAFT COPY

Attribute | Units| Default | Reg? | Description

Universal Attributes

reservation-type Y Allowable values. network , compute , Or
di sk .

reservation-subtype Currently valid only for network reservations.
If it is not specified, it isaforeground
reservation. Otherwise it is one of
background oOr | ow1|atency . For more
information, see Types of Network Reservati
above.

start-time Secs Y What time the reservation starts in seconds
since 00:00:00 UTC, January 1, 1970. If you
specify now , then the reservation will begin
immediately.

duration secs | 100 L ength of the reservation, in seconds.

Compute Resource Attributes

percent-cpu % 20 Percentage of the CPU stime given to the
reserved process.

Network Resource Attributes

endpoint-a Y The machine at one end of the network flow.
This must be specified as a dotted | P address,
such as 140.221.48.162.

endpoint-b Y The machine at the other end of the network
flow. This must be specified as a dotted IP
address, such as 140.221.48.162.

bandwidth Kbps | 8 How fast aflow can transfer data.

directionality” bidirectional uni di rect i onal - ab: reservation for traffic
fromatob.
uni di rect i onal - ba: reservation for traffic
frombtoa
bi di recti onal : reservation for traffic in both
directions.

Disk Resource Attributes

size KB The storage space needed for asinglefile.

bandwidth Kbps | 8 How fast data can be read/written to afile.

" directionality is ignored in the current (March 2000) version of GARA. Right now,
unidirectional-ab isassumed.

8 DRAFT COPY

Creating a Reservation

Before you can create a reservation, you will need to specify your reservation. See Describing
your Reservation Requestbove. Then you request your reservation with
globus gara reservation_create (spacing adjusted for clarity):

Before you can create a reservation, you will need to specify your reservation. See Describing
your Reservation Requestbove. Then you request your reservation with
globus gara reservation_create (spacing adjusted for clarity):

int error;

char *request _rsl = &(reservation-type=network)
(start-tine=953158862) (duration=3600)
(endpoi nt - a=140. 221. 48. 146)
(endpoi nt - b=140. 221. 48. 106)
(bandwi dt h=150) ;

char *reservati on_handl e;

error = gl obus_gara_reservati on_create(gat ekeeper_contact, request_rsl,
& eservati on_handl e);

Note that the gatekeeper contact is a string obtained from another location, such asthe MDS. An
example gatekeeper contact may look like

dslnet2.mes.anl.gov: 754:/C=US/O=Globus/O=Argonne National Laboratory/OU=Mathematics and Computer
Science Division/CN=dslnet2.mcs.anl.gov

For more information on gatekeeper and gatekeeper contacts, see http://www.globus.org, and
read about GRAM.

Modifying a Reservation

Modifying a reservation is similar to creating a reservation, except that instead of providing a
gatekeeper contact, you provide the handle to the reservation that you created earlier:

int error;

char *request _rsl = &(reservation-type=network)
(start-tine=953158862) (duration=7200)
(endpoi nt - a=140. 221. 48. 146)
(endpoi nt - b=140. 221. 48. 106)
(bandwi dt h=200) ;

error = gl obus_gara reservation_create(reservati on_handl e, request _rsl,
& eservati on_handl e);

DRAFT COPY 9

Querying a Reservation

If you would like to find out the status of a reservation, you can query it:

int error;
i nt status;

error = gl obus_gara_reservation_status(reservation_handl e, &status);
If thereis not an error, the status will be one of

GLOBUS GARA_RESERVATION_STATUS NOT_STARTED
GLOBUS GARA_RESERVATION_STATUS_NOT_STARTED_BOUND
GLOBUS GARA_RESERVATION_STATUS READY_NOT_BOUND
GLOBUS GARA_RESERVATION_STATUS ACTIVE

GLOBUS GARA_RESERVATION_STATUS_FINISHED

A reservation is bound if a previous call to globus gara reservation_bind succeeded. A
reservation is ready if the current time is later than the start time, and the duration has not yet
elapsed. A reservation is active if it is both ready and bound. A reservation is finished if the
current time is later than the start time plus the duration.

Binding a Reservation

When you are ready to use a reservation, you need to bind it in order to begin using the
reservation:

i nt error;
char *bind_paranters = &(whi ch-endpoi nt=a) (endpoi nt-a-port=1234)
(endpoi nt - b- port =5678) ;

error = gl obus_gara_reservation_bi nd(reservation_handl e,
&bi nd_par aneters);

Notice that the run-time parameters are specified as an RSL string. Currently, bind parameters
are only specified for compute and network reservations. For compute reservations, the only
parameter to be specified is pr ocess- i d, which specifies the process ID of the process that will
be receiving the reservation.? For network reservations, there are three parameters:

* which-endpoi nt: If the reservation is being bound from a machine involved in the
reservation, this specifies which machine it is. The machine is either a or b, and it
matches what was specified in the reservation request. If a different machine is binding the
reservation on behalf of the processesinvolved, smply use a .

2 Note that the process ID isrelevant only if you are using the DSRT resource manager to control scheduling for
processes with reservations.

10 DRAFT COPY

* endpoint-a-port: This is the port used by endpoint-a, as specified in the reservation
request. Because the current GARA implementation assumes that data is being sent from
endpoint-ato endpoint-b, thiswill be the port used by the sender.

* endpoint-b-port: Thisis the port use by endpoint-b, as specified in the reservation
request. Because the current GARA implementation assumes that data is being sent from
endpoint-ato endpoint-b, thiswill be the port used by the receiver.

Note that a reservation is not considered active until it is bound. Once a reservation has both
begun and been bound, the GARA do whatever setup is necessary in order to ensure that the
reservation is granted. It is okay if the reservation is bound before it has begun, because GARA
will automatically enable the reservation once it begins.

If you will temporarily not be using a reservation but you will resume using it before it has
expired, you can unbind the reservation:

i nt error;

error = gl obus_gara_reservation_unbi nd(reservati on_handl e);

Once you unbind areservation, you may bind it again.

Using Callbacks

If you would like to be informed whenever the status of a reservation changes (see Querying a
Reservatiorabove), you can use a callback function. Once you register a callback function, it

will immediately be called once, to provide the current status, and will be called every time the

status changes afterwards.

First you need to create a callback function:

static void call back_handl er (

char *reservati on_handl e,
gl obus_gara_reservation_event t event,
voi d *user _paraneter)

/* Place code here to exam ne the event */

/* If it is a status event, event.event type will be
GLOBUS_GARA STATUS EVENT, and the status will be in
event.event. */

if (event.event == GLOBUS GARA STATUS EVENT)

{
if (event.event type == GLOBUS GARA RESERVATI ON_STATUS FI NI SHED)

{

/* React to reservation being finished */

}
}

return;

DRAFT COPY 11

Then you need to register this function with GARA. Y ou need to register the function for each
reservation that you wish to monitor:

int error;

error = gl obus_gara_reservation_cal |l back_regi ster(reservation_handl e,
cal | back_handl er, NULL);

Note that the last parameter you pass to the registration function will be forwarded as the
user _par arret er to your callback function.

If you would no longer like to have a function called when the status changes, you can unregister
it:

int error;

error = gl obus_gara_reservation_cal |l back_renove(reservation_handl e,
cal | back_handl er);

Note you can register multiple callback functions for a single reservation handle.

Canceling a Reservation

When you are all done using areservation, you should cancel it, using the reservation handle that
you obtained when you created the reservation.

gl obus_gara_reservati on_cancel (reservati on_handl e);

When you cancel areservation, all of the callbacks that have been registered for that reservation
will automatically be cancelled.

Deactivating GARA

When you have finished using GARA, you should deactivate it, to alow it to clean up:

gl obus_nodul e_deacti vat e(GLOBUS_GARA CLI ENT_MODULE) ;

GARA Reference

Constants

12 DRAFT COPY

This section describes the constants used by the GARA API. You will find them all either in
gl obus_gara_client.h orin globus_gara_common. h . Note, however, that
gl obus_gara_client.h includes gl obus_gara_conmon. h for you.

Errors

GLOBUS _GARA_ERROR_NONE
No error has occurred.
GLOBUS GARA_ERROR_UNKNOWN
An error has occurred, but GARA just doesn t know what it is.
GLOBUS GARA_ERROR_MODULE_NOT_ACTIVE
Y ou have tried to use GARA without activating the module first.
GLOBUS GARA_ERROR_BAD_PARAMETER
A bad parameter, such as a NULL reservation handle, has been passed to a GARA
function.
GLOBUS GARA_ERROR_ZERO LENGTH_RSL,
An RSL string was provided, but it is empty. It may be that thisis never returned.
GLOBUS GARA_ERROR_BAD_RSL,
Thereis an error, probably a syntax error, in the RSL string.
GLOBUS GARA_ERROR_BAD_RESERVATION_HANDLE
The reservation handle that was provided isn t really areservation handle.
GLOBUS GARA_ERROR_CONNECTION_FAILED
GARA was unable to connect to the gatekeeper.
GLOBUS GARA_ERROR_AUTHORIZATION
GARA was unable to authorize with the gatekeeper. Did you run grid-proxy-init?
GLOBUS GARA_ERROR_GATEKEEPER_MISCONFIGURED
| don t think thisis ever reported, so it probably doesn t mean anything.
GLOBUS GARA_ERROR_VERSION_MISMATCH
| don t think thisis ever reported, so it probably doesn t mean anything.
GLOBUS GARA_ERROR_INVALID_REQUEST
| don t think thisis ever reported, so it probably doesn t mean anything.
GLOBUS GARA_ERROR_UNKNOWN_RESERVATION_TYPE
The reservation type in the RSL reservation request must be one of network ,
compute, or disk, but it wasnt.
GLOBUS GARA_ERROR_PROTOCOL_FAILED
There was a problem communicating with the gatekeeper.
GLOBUS _GARA_ERROR_MISSING_RESERVATION_TYPE
The reservation type in the RSL reservation request wasn t provided.
GLOBUS GARA_ERROR_OUT_OF MEMORY
A request for memory failed. You rein trouble!
GLOBUS GARA_ERROR_MISSING_ENDPOINT_A
A network reservation request didn t specify endpoint-a.
GLOBUS GARA_ERROR_MISSING_ENDPOINT_B
A network reservation request didn t specify endpoint-b.
GLOBUS GARA_ERROR_CANT_MAKE_RESERVATION

DRAFT COPY 13

The reservation can t be made. Probably there are other reservations already at the same
time, and there isn t room for your reservation.
GLOBUS GARA_ERROR_PROBLEM_WITH_LRAM
The most likely cause of this error is that the resource manager is not running or that
communication with it has failed.
GLOBUS GARA_ERROR_HTTP_UNPACK_FAILED
A serious protocol error happened, probably a programming error on our part, not yours.
GLOBUS GARA_ERROR_BAD_RESERVATION_OBJECT
This error probably means that you tried to make a network reservation for an endpoint
that the resource manager hasn t been configured to allow reservationsfor.
GLOBUS GARA_ERROR_GARA_SERVICE_EXECUTABLE_NOT_FOUND
The gatekeeper is misconfigured. In particular, it cant find the
globus_gatekeeper gara service executable.
GLOBUS GARA_ERROR_CANT_CONTACT_RESOURCE_MANAGER
The resource manager is unavailable. Check to make sure that it s running.
GLOBUS GARA_ERROR_UNKNOWN_GRAM_ERROR
Some error in the underlying GRAM Gatekeeper protocol has failed.
GLOBUS _GARA_ERROR_MISSING_RESERVATION_SUBTYPE
| don t think thisis ever reported, so it probably doesn t mean anything.

Callback and Status Constants

The following events are reported to callbacks:

GLOBUS GARA_STATUS EVENT
The status of the reservation has changed. See the lists of status constants below.
GLOBUS GARA_CHANGE_EVENT
The reservation has been preempted, or the reservation quantity (like bandwidth) has
changed. See the list changes below.
GLOBUS GARA_MONITOR_EVENT
Not yet used.

The following statuses can be reported to callbacks on a status event or in response to a user
calling gl obus_gara_reservati on_st at us.

GLOBUS GARA_RESERVATION_STATUS NOT_STARTED
The reservation has not yet begun (the current time is before the start time).
GLOBUS _GARA_RESERVATION_STATUS NOT_STARTED_BOUND
Although the reservation has not yet begun, the reservation has been bound.
GLOBUS GARA_RESERVATION_STATUS READY_NOT_BOUND
The reservation has begun (the current time is after the start time) but cant yet be used
because it has not been bound yet.
GLOBUS _GARA_RESERVATION_STATUS ACTIVE
The reservation has begun and been bound.
GLOBUS GARA_RESERVATION_STATUS FINISHED

14 DRAFT COPY

The reservation is over. That is, the current time is greater than the start time plus the
duration of the reservation.

The following changes can be reported on a CHANGE_EVENT:

GLOBUS GARA_RESERVATION_CHANGE_PREEMPTED
The reservation has been preempted because a more important reservation has occurred.
Currently, thiswill not be reported, because preemption has not yet been implemented.
GLOBUS GARA_RESERVATION_CHANGE _QUANTITY
The quantity (like bandwidth) has been changed. This occurs for bulk transfer
reservations.

Data Structures

Thisisadescription of the data structures used by GARA.

The Event Data Structure

t ypedef struct
{

i nt event type;
i nt event ;
double quantity;
} gl obus_gara_reservation_event t;

This structure is provided to callback functions. The event type and event are constants from the

list above. The quantity is provided when the event is a change event indicating that the quantity
has changed.

Callback functions

typedef void (*gl obus_gara reservation_call back_t)(

char *reservation_handl e,
gl obus_gara_reservati on_event _t event,
voi d *user _paraneter);

Thisisthe type of function that must be used for callback functions

Functions

Note that al of the functions in GARA return an integer. This integer is the error code, if any
error occurred. See the list of errors under Constants

globus _gara reservation creste

i nt gl obus_gara_reservation_creat g
const char *nmmanager _contact,

DRAFT COPY 15

const char *reservation_specification,
char **reservation_handl e);

This function attempts to make a reservation.

In:
manager _contact: The contact string for the gatekeeper that controls access to the
resource manager for the resource you wish to make a reservation with.
reservation_specification: AnRSL string describing the attributes you wish to have
for your reservation. See Describing a Reservation Requekbve.
Out:

reservati on_handl e: If the reservation was successfully made, a pointer to your
reservation handle will be provided in this parameter. The memory for the
reservation handle is allocated by gl obus_mal | oc(), and it is your responsibility
to free the memory with gl obus_f ree() when you are done.

globus gara reservation_modify

i nt gl obus_gara_reservation_nodify(
const char *old_reservation_handl e,
const char *reservation_specification,
char **new_reservation_handl e);

This function attempts to modify a new reservation. Note that if the reservation is changed, you
are provided with a new reservation handle. While current versions of GARA will provide an
identical reservation handle, future versions of GARA may not.

In:
ol d_reservation_handl e: The handlefor the reservation that you wish to modify.
reservation_specification: AnRSL string describing the new attributes you wish to
have for your reservation. See Describing a Reservation Requekbve.
Out:

new reservation_handl e: If the reservation was successfully modified, a pointer to
your reservation handle will be provided in this parameter. The memory for the
reservation handle is allocated by gl obus_mal | oc(), and it is your responsibility
to free the memory with gl obus_f ree() when you are done.

globus_gara reservation_bind

i nt gl obus_gara_reservati on_bi nd(
const char *reservation_handl e,
const char *hind_paraneters);

This claims areservation by providing run-time parameters.

16 DRAFT COPY

reservation_handl e: The handlefor the reservation that you wish to bind.
bi nd_par armet ers: An RSL string describing the new attributes you wish to have for
your reservation. See Binding a Reservatioabove.

globus_gara reservation_unbind

i nt gl obus_gara_reservation_unbi nd(
const char *reservation_handl e);

This un-claims areservation. The reservation is still valid and can be used again by calling
gl obus_gara_reservation_bi nd() again.

In:
reservation_handl e: The handlefor the reservation that you wish to bind.

globus_gara reservation_status

i nt gl obus_gara_reservation_stat us(
const char *reservation_handl e,
i nt *st at us;

This function queries for areservation s status.

In:
reservation_handl e: The handlefor the reservation that you wish to query.
Out:
st at us: The status of the reservation. It is one of the constants described in Callback
and Status Constants.

globus gara reservation callback register

i nt gl obus_gara_reservation_call back_register(

const char *reservation_handl e,
gl obus_gara_reservation_cal |l back_t call back functi on,
voi d *user _paraneter);

After this function successfully completes, the specified callback function will be called
whenever the status of areservation changes. It will also be immediately called once to provide
the current status of the reservation. Note that multiple callbacks can be registered for a single
reservation.

In:
reservation_handl e: The handle for the reservation for which you wish to receive
callbacks.
cal I back_function: The function that will be called by GARA when the status of a
reservation changes.

DRAFT COPY 17

user _par anet er: The value you provide here will be provided to the callback function
unmodified.

globus_gara reservation_callback_remove

i nt gl obus_gara reservation_call back_renove(
const char *reservation_handl e,
gl obus_gara_reservation_call back_t callback _function);

After this function successfully completes, the specified callback function will no longer be
called when the status of the reservation changes.

In:
reservation_handl e: The handle for the reservation for which you wish to receive
callbacks.
cal I back_function: The function that will be called by GARA when the status of a
reservation changes.
user _par anet er: The value you provide here will be provided to the callback function
unmodified.

globus_gara reservation _cancel

i nt gl obus_gara_reservation_cancel (
const char *reservation_handl e);

This cancels areservation. When areservation is cancelled, the reservation handle (and copies of
it) may not be used anymore. For example, if you try to bind the cancelled reservation, it will
fail.

In:
reservation_handl e: The handle for the reservation that you wish to cancel.

globus gara reservation version

i nt gl obus_gara_version(void);
This returns the current version number for GARA.

globus_gara reservation_client_debug

i nt gl obus_gara_client_debug(void);
This enables debugging mode. Output will be printed to stderr.

In:
reservation_handl e: The handle for the reservation that you wish to cancel.

18 DRAFT COPY

globus gara client_error_string

const char *globus_gara client_error_string(
int error_code);

For any error code returned by GARA, this provides a printable string that corresponds to the
error code.

In:
error_code: Theerror code for which you wish to obtain a string representation.

DRAFT COPY 19

Appendix: Example Program Using GARA

This code has been greatly ssimplified but should give you the basic idea of how to use GARA.

#i ncl ude "gl obus_gara client.h"
int reservation_ready = GLOBUS FALSE;

static void call back_handl er (

char *reservation_handl e,
gl obus_gara_reservation_event t event,
voi d *user _paraneter);

int main(int argc, char **argv)

{
i nt error;
i nt seconds;
i nt test i ndex;
char *reservation_handl e;
char *reservation_rsl_string;

/* Initialize */
gl obus_nodul e_acti vat e(GLOBUS_GARA CLI ENT_MODULE)

/* Make a reservation that starts in 20 seconds and goes for an hour */
/* O course, many of the paraneters would not actually be static in a
* real program */
reservation_rsl_string = gl obus_nal | oc(256);
sprintf(reservation_rsl _string,
"&(reservation-type=network) (start-tine=%l) (duration=%) \
(endpoi nt-a=%) (endpoint-b=%) (bandw dth=%l) (protocol=tcp)"

(int) time(NULL) + 20, 3600

128.135.11.1, 128.135.11.6, 150);
error = gl obus_gara_reservation_create(paraneters. gat ekeeper_cont act,

reservation_rsl _string, & eservation_handle);

/* Set up a callback to | et us know when the reservation is ready. */
error = gl obus_gara_reservation_cal |l back_regi ster(reservation_handl e,
cal | back_handl er, NULL);

/* Wait for the reservation to becone active */
while (!reservation_ready)
sl eep(1);

/* Bind the reservation */
error = gl obus_gara_reservation_bi nd(reservation_handl e,
" &(whi ch- endpoi nt =a) (endpoi nt -a-port=9999) \
(endpoi nt - b- port=9999)");

/* Use the reservation... */

/* Renove the call back */

20 DRAFT COPY

error = gl obus_gara_reservation_cal |l back_renove(reservation_handl e,
cal | back_handl er);

/* Cancel the reservation */
error = gl obus_gara_reservation_cancel (reservati on_handl e);

/* Cean up */

gl obus_free(reservation_rsl_string);

gl obus_free(reservati on_handl e);

gl obus_nodul e_deacti vat e(GLOBUS_GARA CLI ENT_MODULE) ;

return O;
}
static void call back_handl er (
char *reservation_handl e,
gl obus_gara_reservation_event _t event,
voi d *user _paraneter)
{
if (event.event _type == GLOBUS_GARA STATUS_EVENT
&& event. event == GLOBUS_GARA RESERVATI ON_STATUS READY_NOT_BOUND)
{
reservation_ready = GLOBUS_TRUE;
}

}

